CSCI Faculty Research
Collaborative Research Awards
Spring 2022 Winners
Optimal Sequence of Learning for
Memorizers Versus Rule-Finders
Principal Investigator: Jeri Little
Department of Psychology,
CSU East Bay
Abstract: Grouping information into different categories enables us to learn, remember, and integrate new information, but the optimal way to learn categorical information is unclear. Much research suggests that mixing up items from different categories (i.e., interleaving) is more effective for learning than is grouping items by category (i.e., blocking), particularly if the task involves memorization and/or classification based on perceptual similarity (see Kornell & Bjork, 2008). However, when a rule can be verbalized to explain categorization, blocking can be better than interleaving (Noh, Yan, Bjork, & Maddox, 2016). But, even when a rule defines category groupings, not all people find rules or even think to look for them. Within a single set of items, some people try to find rules, but some memorize the category-item pairs (Little & McDaniel, 2015). The proposed study examines optimal sequence as a function of the strategies that people use to learn, examining transfer performance at multiple time points (immediately and at a two-week delay). The results of the study have implications for optimizing learning in educational contexts.
This research will be conducted in collaboration with Jexy An Nepangue and Jayde Holt-Wyindon, two CSUEB students. We expect to submit an abstract to a conference and a manuscript to a journal by the end of the award period.
Understanding Potential Influence of Social, Cultural, and Historical Traumas on Health of Bangladeshis & Nepalese Northern California
Principal Investigator: Arnab Mukherjea, Dr.P.H., M.P.H.
Chair & Associate Professor Public Health, CSU East Bay
Abstract: The historical traumas related to the colonial partition of South Asia, including the indentured servitude and involuntary relocation of residents to outside the subcontinent, is well chronicled. The legacies of psychological and social harms caused by this event are compounded by diverse consequences related to prominent cultural hierarchies (e.g., caste, religious, gender, political, age, and minority status, among others) commonly found among native and migrant South Asian populations). What is unclear is the residual and cumulative impact of such traumas, as well as resulting individual and community resiliencies, on health status and disparities found among South Asians in the U.S. The purpose of this pilot research is to understand the breadth of traumas
that persist among communities of South Asian descent in the San Francisco Bay Area, distinguish adverse interpretations and effects of traumas between specific South Asian subgroups, identify social and cultural resiliencies that arise from legacies of trauma, and recognize potential influence of such contextual factors on relevant indicators of health in and among South Asian communities.
A qualitative orientation is employed in this study. In the form of focus groups, participants are stratified by South Asian subgroup (Asian Indian, Bangladeshi, Pakistani, Sri Lankan, and Indo-Fijian) and by gender. Each subgroup-gender dyad will have two focus groups conducted, for a total of 20 data collection events (6 –8 individuals per group) among the entire study sample (maximum of 96 people). Domains of inquiry include discussion of historical, migratory, and contemporary experiences and narrative of trauma and resilience, with a focus on contextual elements (e.g., gender norms, academic and economic pursuits and pressures, seeking of refuge from civil unrest/oppression, caste hierarchies, religious interactions, perceptions as a racial/ethnic minority in the U.S.). The approach to interpreting data will be constant comparative analysis, which will allow for refinement of concepts and thematically-relevant categorizations.
This pilot aims to add relevant and timely contributions to the scientific base of knowledge which elucidates previously-unknown influences on health, particularly for the growing population of aging individuals of South Asian descent in the U.S. Findings may provide directions multi-level targets for intervention design, particularly around structural and community-level facilitators and barriers for preventing disease, promoting well-being, and achieving health equity.
Particle Size, Mutation State, or Both? What Affects Apolipoprotein Exchange Rates on HDL?
Principal Investigator: Mark Borja
Department of Chemistry and Biochemistry, CSU East Bay
Abstract: High-density lipoprotein (HDL) is commonly known as the “good cholesterol” because healthy levels of this protein are associated with reduced risk of cardiovascular disease. Apolipoprotein A-I (apoA-I) is the main protein component of HDL, and is primarily responsible for HDL’s beneficial reverse cholesterol transport (RCT) activity. RCT activity is frequently measured using cell-based assays of cholesterol efflux. There is a strong association between the exchangeability (binding and releasing HDL) of apoA-I and cholesterol efflux. However, it is not known whether HDL particle size, along with the mutation state of apoA-I, impact the exchange rate of apoA-I. The purpose of this study is to investigate apoA-I exchange on three mutants of apoA-I which are associated with decreased HDL particle size (apoA-I Milano, apoA-I L75P, and apoA-I L174S), reduced HDL particle quantity, but increased capacity for cholesterol efflux capacity. The effect HDL particle size on apoA-I will be investigated in parallel because all three mutants of apoA-I have a tendency to naturally form smaller HDL particles.
This research will be conducted in collaboration with Dr. Jens Lagerstedt of Lund University, Sweden. The funding will be used toward the purchase of the necessary supplies for the project.
Analyzing Kitting’s pilot data on Novel Multidisciplinary Solutions to Global Climate Disruption: Persistence & Reflective Spectra of Upper Atmospheric Aerosols
Principal Investigator: Christopher Kitting
Department of Biological Sciences, CSU East Bay
Abstract: This multidisciplinary research has been expanding on my previous high-altitude Sierra work at UC’s Barcroft Lab and my two related, NASA atmospheric missions, on novel solutions to climate disruption including sea level rise. The work continues CSUEB’s Department of Biological Sciences monitoring and improving our environment, with five of us biology professors having published over ten reference and textbooks on the subject, with two of us using hundreds of thousand$ in research grants annually for >~20 consecutive years. Alas, then CSUEB then moved grant payments from its Foundation to cumbersome, restrictive CSUEB offices.
With half the proposed funding for this proposed project, this award deleted supplies and the proposed stipend for my preferred major collaborator (Director of Atmospheric Programs at US Air Force Academy). As noted in this award proposal, some details remain unsuitable for broad or web access, as with US Dept. of Defense.
I was able to substitute an analogous, local chair of Planetary Sciences and well-known climate and atmospheric expert from Cabrillo College (Santa Cruz/Aptos), Dr. Rick Nolthenius, who immediately helped inform my related, diverse CSUEB students about such expertise and opportunities, and now is recruiting such students to CSUEB.
An additional collaborator, East Bay Regional Parks wildlife steward (a former CSUEB Bio Sci MS student) David Riensche then helped complete our related journal manuscript on worsening local heat spells depleting shoreline breeding bird assemblages. Similarly, Kitting and his present MS student edited his Bio Sci thesis on solutions for wildlife during extreme weather, for format review later this summer.
I immediately presented other related findings at a virtual conference for Western Society of Naturalists: “Atmospheric persistence of reflective aerosols test #2: Hayabusa spacecraft fastest re-entry, with ablative organic heat shield.”
My spring ‘22 Conservation Bio Class offered these atmospheric options, including prep and field observations around our valuable Biology Ecological Preserve on our south campus. Several students became enthused, with options now integrated into the class. These outdoor class activities prevented at least one COVID risk and isolation for the class. We developed data tables based on our analogous environmental monitoring and on atmospheric data tables from Nolthenius. Weather did not cooperate during these spring semester atmospheric events, but my independent study undergrad there completed a research project on such prep for sea level rise, promptly published together with color illustrations in Tideline from USFWS, now Tide Rising, edited by SF Bay Wildlife Society: “Minimizing Human Impacts on Marsh Plants in a Wildlife Refuge.” By CL Kitting and Felicitas Jimenez, CSUEB Conservation Biology B. Sci. (plus author bios) Tide Rising (3:e) 2-3. 2022.
Univ. Calif. then approved my new atmospheric proposal for use of their Barcroft high altitude lab this summer (2022), but COVID then closed most such services at that remote lab, and my project there is being postponed one year. --after this award expires. Our analogous research and teaching productivity continue.
Studying Degradation of Modern Plastic Artworks using Surface-enhanced Raman Spectroscopy
Principal Investigator: Stephanie Zaleski Ph.D.
Department of Chemistry & Biochemistry, CSU East Bay
Abstract: As an ever-increasing number of artworks made of plastics enter museum collections, it is critical to develop strategies to ensure the longevity of these objects, especially since many plastics already show visible signs of deterioration. Chemical characterization of plastic artworks is therefore necessary to inform conservation treatment strategies and to optimize storage conditions. The proposed research is a collaboration between the Zaleski laboratory at CSUEB, the Conservation Department at the Fine Arts Museums of San Francisco and the Broad Museum in Los Angeles. Specifically, we are proposing to use adsorbent surface-enhanced Raman spectroscopy (SERS) substrates recently developed in Dr. Zaleski’s laboratory to characterize the degradation of PVC-based postcards from the series Honey is Flowing by Joseph Beuys. The funding will be used to financially support a student researcher, travel to the museums for artwork analysis, and for the purchase of laboratory supplies.